
Dynamic susceptibilities of the single-impurity Anderson model within an enhanced noncrossing
approximation

Sebastian Schmitt
Theoretische Physik II, Technische Universität Dortmund, Otto-Hahn Str. 4, D-44221 Dortmund, Germany

Torben Jabben and Norbert Grewe
Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 6, D-64289 Darmstadt, Germany

�Received 21 May 2009; revised manuscript received 18 November 2009; published 29 December 2009�

The single-impurity Anderson model is studied within an enhanced noncrossing approximation �ENCA�.
This method is extended to the calculation of susceptibilities and thoroughly tested, also in order to prepare
applications as a building block for the calculation of susceptibilities and phase transitions in correlated lattice
systems. A wide range of model parameters, such as impurity occupancy, temperature, local Coulomb repul-
sion, and hybridization strength, are studied. Results for the spin and charge susceptibilities are presented. By
comparing the static quantities to exact Bethe ansatz results, it is shown that the description of the magnetic
excitations of the impurity within the ENCA is excellent, even in situations with large valence fluctuations or
vanishing Coulomb repulsion. The description of the charge susceptibility is quite accurate in situations where
the singly occupied ionic configuration is the unperturbed ground state; however, it seems to overestimate
charge fluctuations in the asymmetric model at too low temperatures. The dynamic spin-excitation spectrum is
dominated by the Kondo screening of the impurity spin through the conduction band, i.e., the formation of the
local Kondo singlet. A finite local Coulomb interaction U leads to a drastic reduction in the charge response as
processes involving the doubly occupied impurity state are suppressed. In the asymmetric model, the charge
susceptibility is enhanced for excitation energies smaller than the Kondo scale TK due to the influence of
valence fluctuations.
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I. INTRODUCTION

The single-impurity Anderson model �SIAM� describes an
impurity of localized f states with local Coulomb interaction
embedded into a metallic host of noninteracting c-band
electrons.1 In its simplest version it discards the possibility of
a complex orbital structure of the impurity and models the
local f states through a twofold degenerate s orbital. The
Hamiltonian for the impurity reads

Ĥf = �
�
�� f f̂�

† f̂� +
U

2
n̂�

f n̂�̄
f � �1�

with f̂�
† � f̂�� and n̂�

f = f̂�
† f̂� the usual creation �annihilation�

and number operators for f electron with spin �, respec-
tively. The local one-particle energy is given by � f and the
local Coulomb interaction is the usual density-density inter-
action proportional to the matrix element U. The noninter-
acting conduction electrons are modeled by a single band of
Bloch states with crystal momentum k� characterized by the
dispersion relation �k�

c

Ĥc = �
k� ,�

�k�
cĉk��

† ĉk��. �2�

These two parts mix via a hybridization amplitude Vk�

V̂ =
1

�N0
�

k�

�Vk� f̂�
† ĉk�� + H.c.� . �3�

The total Hamiltonian is then the sum of these three terms

Ĥ = Ĥc + Ĥf + V̂ . �4�

Even though the thermodynamics of the model can be
solved exactly within the Bethe ansatz method,2–5 dynamic
quantities can, in general, not be obtained exactly and one
has to rely on approximations. The SIAM has been exten-
sively studied with various methods, including the numerical
renormalization group �NRG�,6–9 the �dynamic� density-
matrix renormalization group,10–13 quantum Monte Carlo
�QMC� methods14–16 and direct perturbation theory with re-
spect to the hybridization.17–20 Especially with the develop-
ment of the dynamical mean-field theory �DMFT�,21 where
the solution of an effective SIAM represents the essential
step toward the solution of the correlated lattice system, the
interest in accurate and manageable impurity solvers has in-
creased.

In this work, we extend the well-established enhanced
noncrossing approximation �ENCA� �Refs. 22–25� to the cal-
culation of the static and dynamic susceptibilities of the im-
purity. Like many other approximations formulated within
the direct perturbation theory with respect to the
hybridization,23,26–31 the ENCA is thermodynamically con-
serving in the sense of Kadanoff and Baym.32,33 It extends
the usual noncrossing approximation �NCA� to finite values
of the Coulomb repulsion U via the incorporation of the
lowest-order vertex corrections, which are necessary to pro-
duce the correct Schrieffer-Wolff exchange coupling and the
order of magnitude of the low-energy Kondo scale of the
problem. From the NCA it is well known that some patho-
logical structure appears at the Fermi level below a pathol-
ogy scale34,35 Tpath�10−1−10−2TK. The ENCA removes the
cusps in spectral functions associated with this pathology22

and only a slight overestimation of the height of the many-
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body resonance at very low temperatures remains. As it will
be shown in this work, the skeleton diagrams selected within
the ENCA suffer from an imbalance between charge and spin
excitations and overestimate the influence of charge fluctua-
tions. Other than that, it has no further limitations.

Despite the known limitations of the NCA it has been
widely applied to more complex situations due to the forth-
right possibility of extensions. For the SIAM out of equilib-
rium it is one of the few methods to incorporate nonequilib-
rium dynamics as well as many-body effects.36 Complex
orbital multiplets can be included in a straight-forward man-
ner and connections to experimental data can be made.37

However, incorporating finite values of U may change the
many-body features near the Fermi level considerably.23,38

Therfore, a well-tested extension of the ENCA in order to
calculate susceptibilities at finite U with the same accuracy
as the spectra is desired. In particular, the calculation of lat-
tice susceptibilities within DMFT �Refs. 39–41� needs a re-
liable strategy for an effective impurity and the treatment of
one- and two-particle excitations of the same footing is of
paramount importance. Calculations of lattice susceptibilities
and phase transitions of the Hubbard model with the ENCA
as the impurity solver are presented elsewhere.41,42

Compared to the “numerically exact” schemes such as the
renormalization group methods �RG�, exact diagonalization
�ED�, or QMC, the direct perturbation theory has its advan-
tages: �i� the approximations are free of systematic errors
stemming from the discretization of the conduction band
�RG and ED� or imaginary time �QMC�. The continuum of
band states is kept throughout the calculation and dynamic
Green’s functions are formulated with continuous energy
variables. Thus, there are no discretization artifacts43 and
there is no need for artificial broadening parameters44,45 or z
averaging.46,47 �ii� The coupled integral equations for dy-
namic quantities, which have to be solved numerically, are
formulated on the real frequency axis, which renders the
nontrivial numerical analytic continuation of a finite set of
Fourier coefficients48 or deconvolution49 unnecessary. The
continuous-time quantum Monte Carlo approach16 avoids a
systematic Trotter-error �i� but it is still plagued with the
occurrence of a negative sign problem.50

The discretization errors �i� are of special importance for
self-consistent calculations such as the DMFT. There, the
solution of an impurity model is used to construct a guess for
the Green’s function of the lattice which is then used to yield
a new effective “conduction band” for the impurity model.
Errors in the treatment of the continuum of band states will
be propagated by the iterative solution and may lead to an
incorrect distribution of spectral weight.

The ENCA can be solved quite effectively on simple
desktop computers and is numerically not very demanding.
Spectral functions can be calculated within some seconds to
minutes while dynamic susceptibilities may take up to some
hours. Additionally, it contains no free parameters and no
fine tuning is necessary. This makes it especially interesting
for involved lattice calculations.

II. THEORY

A. Direct perturbation theory

In direct perturbation theory with respect to the hybridiza-

tion term V̂ the “unperturbed” system is represented by the

uncoupled �Vk� =0� interacting impurity. This is diagonalized
by the ionic many-body states �M	

Ĥf = �
M

EMX̂M,M , �5�

where the operators X̂M,M = �M	
M� are projectors on the
eigenstates �M	 and are diagonal versions of the so-called

ionic transfer �or Hubbard� operators X̂M,M�= �M	
M��. For a
simple s shell the quantum numbers M characterize the
empty �0	, singly occupied with spin � ��	 and doubly occu-
pied �2	 impurity states with the corresponding unperturbed
eigenvalues E0=0, E�=� f, and E2=2� f +U, respectively. Fur-
thermore, the partition function and dynamic Green’s func-
tion are expressed in terms of a contour-integration in the
complex plane

Z = Tre−�Ĥ = �
C

dz

2�i
e−�zTr�z − Ĥ−1, �6�

GA,B�i�� =
1

Z
�

C

dz

2�i
e−�zTr��z − Ĥ−1Â�z + i� − Ĥ−1B̂�

�7�

with i� either a fermionic or bosonic Matsubara frequency

depending on the type of the operators Â and B̂. The contour
C encircles all singularities of the integrand, which are situ-
ated on the Im z=0 and Im�z+ i��=0 axes in a mathemati-
cally positive sense. Performing the trace over the c electrons
first, the reduced f-partition function Zf, the f-electron one-
body Green’s function F��Gf�,f

�
† and generalized suscepti-

bility �M,M��GX̂MM,X̂M�M�
can be expressed as

Zf = �
M
�

C

dz

2�i
e−�zPM�z� , �8�

F��i	n� =
1

Zf
�

C

dz

2�i
e−�z�P0�z�P��z + i	n�
0,��z,i	n�

+ P�̄�z�P2�z + i	n�
2,�̄�z + i	n,i	n� , �9�

�M,M��i�n� = −
1

Zf
�

C

dz

2�i
e−�z�M,M��z,z + i�n� =

−
1

Zf
�

C

dz

2�i
e−�z�M,M��z,z + i�n�M��z,z + i�n� .

�10�

Here M�z ,z��= PM�z�PM�z�� and the ionic propagators

PM�z� = 
M�
�z − Ĥ + Ĥc−1	c�M	 , �11�

�
1

z − EM − �M�z�
, �12�

which describe the dynamics of an ionic state �M	, are intro-
duced. In Eq. �12� the ionic propagator is expressed with the
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help of the ionic self-energy �M�z�. 
¯ 	c= 1
Zc

Trc�e−�Ĥc. . .�
indicates that the trace is to be taken over the c states only
and Zc represents the partition function of the isolated c sys-
tem. In Eqs. �9� and �10�, 
M,M� and �M,M� represent vertex
functions to be specified later. These equations are graphi-
cally represented in Fig. 1.

After rewriting the Hamiltonian in terms of the ionic-

transfer operators X̂M,M�, the resolvent operator is expanded

with respect to V̂, �z− Ĥ−1= �z− Ĥf − Ĥc−1�n=0
� �V̂�z− Ĥf

− Ĥc−1n. Consequently inserting the identity 1̂
=�c;M�M	�c	
c�
M� and using Eq. �11� for the ionic propaga-
tors, this perturbation theory can be formulated with time-
ordered Goldstone diagrams, representing the dynamics of
the ionic states �M	 and their hybridization processes.51

Approximations are then introduced for the self-energies
�M and vertex functions 
M,M� and �M,M�. In order to be
able to describe nonperturbative many-body phenomena
such as the Kondo effect, certain classes of diagrams have to
be resummed up to infinite order, resulting in a formulation
in terms of skeleton diagrams and corresponding coupled
integral equations for the relevant dynamic functions. Deriv-
ing these equations consistently through functional deriva-
tives from one Luttinger-Ward functional � renders these
approximations thermodynamically consistent.

B. ENCA for generalized dynamic susceptibilities

Within the ENCA, the ionic self-energies and propagators
have to be determined from the well-known set of coupled
integral equations22,23,25,52

�0�z� = �
�
� dx�+�x�P��z + x�
0,��z,x� ,

���z� =� dx�−�x�P0�z − x�
0,��z − x,x�

+� dx�+�x�P2�z + x�
2,��z + x,x� ,

�2�z� = �
�
� dx�−�x�P��z − x�
2,��z,x� , �13�

where the vertex functions are given by


0,��z,z�� = 1 +� dx�+�x�P�̄�z + x�P2�z + z� + x� ,


2,��z,z�� = 1 +� dx�−�x�P�̄�z − x�P0�z − z� − x� �14�

and ���x�=��x�f��x�. The hybridization function ��x� is
constructed from the c-band electrons

��x� =
1

N0
�

k�

�Vk��2��x − �k�
c� �15�

and f�x�=1 / �e�x+1� is the Fermi function with �=1 /T the
inverse temperature �note �=c=kB=1�.

For the generalized susceptibilities �M,M��z ,z��, an addi-
tional set of integral equations has to be set up which is
shown graphically in Fig. 2. In principle, there are 16 such
functions but for each quantum number M only the four
functions �M,0�z ,z��, �M,��z ,z��, and �M,2�z ,z�� are coupled.
Due to the conserving nature of the ENCA, these equations
are closely related to the ENCA expressions for the ionic
self-energies; only some additional bosonic lines entering
and leaving the site have to be introduced.

Whereas the lowest-order vertex corrections of Eq. �14�
together with the ionic propagators Eq. �11� and self-energies
Eq. �12�, are sufficient to furnish a conserving approxima-
tion, the vertices �M,M��z ,z�� for the susceptibilities, Eq.
�10�, have to be iterated up to infinite order. The transcription

Σ0(z) = �
Λ0,σ(z, x)0

x, σσ

0
z

z

, Σσ(z) =� +� , Σ2(z) =�
Λ2,σ(z, x)

Fσ(iωn) = �
0

σ

0 iωn, σ

z

+ � 2
σ̄

σ̄ iωn, σ

z

, χ0,σ(iνn) = � iνn

iνnz + iνn

z

FIG. 1. Diagrammatic equations for the ionic self-energies �up-
per�, f-electron Green’s function �lower left� and dynamic suscep-
tibility �lower right, �0,��i�� as an example�. The dashed, wiggly,
and double-wiggly lines represent the empty, singly occupied ��̄
represents the opposite of the spin �� and doubly occupied ionic
propagators, respectively. The triangles and boxes represent the ap-
propriate vertex functions. The closed full lines in the upper graphs
represent uncorrelated propagations in the c band.

� =� δM,0 + � +� +� + �
� = � δM,σ + 	 +
 +� + �

+  +� +� + �
� = � δM,2 + � +� +� + �

FIG. 2. System of integral equations for �M,0�z ,z��, �M,��z ,z��,
and �M,2�z ,z�� within the ENCA. Zigzag lines in the vertex part
represent the ionic state M, which can either be empty, singly oc-
cupied, or doubly occupied. The arrows entering and leaving each
diagram carry the external bosonic frequency i�.
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of these graphs into formulas is straight forward but lengthy
and will be omitted here.

For very large Coulomb interactions the spectral weight in
the doubly occupied propagator is completely moved to en-
ergies on the order of U. This leads to a negligible influence
in the region of accessible energies on the order of the band-
width due to the large energy denominators and all terms
involving P2 effectively drop out of the equations. Therefore,
for infinitely large Coulomb repulsion U→�, the ENCA re-
duces to the usual NCA and all equations presented above
approach the ones already known from the literature.26,53 In
this sense, the ENCA is still referred to as noncrossing even
though crossing diagrams are included. For approximations
involving “real” crossing diagrams see Refs. 23, 29, 30, and
54.

The functions �M,M��z ,z�� fulfill the symmetry relations

�M,M��z
�,z��� = �M,M��z,z��� �16�

and

�M,M��z,z�� = �M,M��z�,z� , �17�

which are revealed by inspection of the perturbation expan-
sion. The susceptibilities also obey the sum rules

�
M�

�M�,M�i�n� = 
X̂MM	�i�n,0, �18�

�
M

�M�,M�i�n� = 
X̂M�M�	�i�n,0, �19�

�
M,M�

�M�,M�i�n� = �
M


X̂MM	�i�n,0 = �i�n,0, �20�

which arise from the completeness relation of the local ionic
states, 1 f =�M�M	
M�. These sum rules transform into
equivalent statements for the functions �M�,M�z ,z��

�
M�

�M�,M�z,z�� = −
PM�z� − PM�z��

z − z�
. �21�

It can be analytically checked that the ENCA respects these
sum rules. The form of Eq. �21� explicitly reveals the con-
serving nature of this approximation since the sum of sets of
two-particle correlation functions is determined by the corre-
sponding one-particle correlation function, i.e., the ionic
propagator. Insofar Eq. �21� resembles generalized Ward
identities.

In order to obtain the physical susceptibility as a function
of a real frequency, the contour integration of Eq. �10� has to
be performed and then the external bosonic Matsubara fre-
quency can be analytically continued to the real axis,
i�n→�� i���� ���0 infinitesimal�. The result of this pro-
cedure reads

�M,M���
+� = �

−�

� d	

2�i
�YM,M��	,	 + �� − YM,M��	,	 − ��� ,

�22�

where the symmetry relations �16� were used and the defect
quantities

YM,M��x,y� =
e−�x

Zf
��M,M��x

+,y+� − �M,M��x
−,y+� �23�

were defined. Due to the appearance of the exponential fac-
tor, a direct numerical evaluation of the defect quantities
given the �M,M� is not possible and additional sets of integral
equations have to be solved for the YMM� �cf. Refs. 55 and
56�.

In the following, only spin-symmetric situations are con-
sidered and the propagators for opposite spins are identified,
i.e., P�= P�̄� P↑, ��,�=��̄,�̄��↑,↑, ��̄,�=��,�̄��↑,↓. . ..

1. Magnetic susceptibility

The relevant quantity for the magnetic susceptibility is the
autocorrelation function of the z component of the spin op-

erator Ŝz� n̂↑− n̂↓= X̂↑,↑− X̂↓,↓. This translates into the linear
combination

�mag�z,z�� = �↑,↑�z,z�� − �↑,↓�z,z�� , �24�

which needs to be determined. Setting up the equations for
this linear combination using the general equations depicted
in Fig. 2 leads to the cancellation of all spin-symmetric
terms.41 The function �mag�z ,z�� decouples from the
�0,M�z ,z�� and �2,M�z ,z��, and only one integral equation re-
sults

�mag�z,z�� = ↑�z,z���1 −� dxdy�+�x��−�y��P2�z� + x�

�P0�z − y� + P0�z� − y�P2�z + x�

��mag�z + x − y,z� + x − y�� . �25�

The derivation of the corresponding defect equation for Ymag
along the lines of the definition, Eq. �23�, is straight forward
but will be omitted here for brevity.

2. Charge susceptibility

For the charge susceptibility the relevant quantity is the
autocorrelation function of the charge operator n̂= n̂↑+ n̂↓
= X̂↑,↑+ X̂↓,↓+2X̂2,2 leading to the dynamic function

�charge�z,z�� = �↑,↑�z,z�� + �↑,↓�z,z�� + 2��2,2�z,z��

+ �2,↑�z,z�� + �↑,2�z,z�� = �2,2�z,z��

− �0,2�z,z�� + �0,0�z,z�� − �2,0�z,z��

+ S0,↑,2�z,z�� . �26�

In the second equality sum rules such as Eq. �21� were used.
The function S0,↑,2�z ,z�� is not relevant for dynamic suscep-
tibilities since it only contributes in the case of a vanishing
external frequency i�n=0.
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The hole susceptibility, i.e., the autocorrelation function

of the hole operator ĥ=2− n̂=2X̂0,0+ X̂↑,↑+ X̂↓,↓, is given by
the same expression, only with a different contribution from
the sum rules. Both of these contributions do not change the
dynamic susceptibility since they produce only the necessary
constant shift between the static �i�n=0� charge and hole
susceptibility after the contour integration

�hole�i�n� = �charge�i�n� + 4�1 − 
n̂	��i�n,0. �27�

The dynamical quantities of interest are best obtained by
setting up the integral equations for the linear combinations
c0,0=�0,0−�2,0, c0,↑=�0,↑−�2,↑, and c0,2=�0,2−�2,2, which
read

c0,0�z,z�� = 0�z,z���1 + 2� dx�+�x��
0,↑�z�,x� + 
0,↑�z,x�

− 1c0,↑�z + x,z� + x� + 2� dxdy�+�x��+�y�

�P↑�z� + x�P↑�z + y�c0,2�z + x + y,z� + x + y�� ,

�28�

c0,↑�z,z�� = ↑�z,z���� dx�−�x��
0,↑�z� − x,x�

+ 
0,↑�z − x,x� − 1c0,0�z − x,z� − x� +� dx�+�x�

��
2,↑�z� + x,x� + 
2,↑�z + x,x� − 1c0,2�z + x,z�

+ x� +� dxdy�+�x��−�y��P2�z� + x�P0�z − y�

+ P0�z� − y�P2�z + x�c0,↑�z + x − y,z� + x − y�� ,

�29�

c0,2�z,z�� = 2�z,z���− 1 + 2� dx�−�x��
2,↑�z�,x�

+ 
2,↑�z,x� − 1c0,↑�z − x,z� − x�

+ 2� dxdy�−�x��−�y�P↑�z� − x�P↑�z − y�

� c0,0�z − x − y,z� − x − y�� . �30�

All three linear combinations are now coupled which makes
the numerical solution of the full system inevitable. The cor-
responding defect equations are again determined in a
straight-forward way but are omitted here due to their length.

C. Numerical evaluation

The ionic propagators and defect propagators are strongly
peaked at the ionic threshold and they even develop a singu-
larity at zero temperature.23,55,57 The position of this ionic

threshold is not known exactly a priori so we use self-
generating adaptive frequency meshes to represent all func-
tions numerically.

After obtaining the ionic propagators from the set of in-
tegral equations, Eqs. �13�, Eqs. �25� and �28�–�30� can be
solved to yield the two-particle quantities �mag�	� ,	��+�
and cM,M��	

� ,	��+�. With these at hand, the correspond-
ing defect equations can be solved and physical susceptibili-
ties along the lines of Eq. �22� can be extracted.

All integral equations are solved via Krylov subspace
methods,58 where—starting from a sophisticated guess for
the unknown functions—the equations are iterated until con-
vergence is reached. In order to accelerate convergence and
stabilize the iteration procedure Pulay-mixing59 between dif-
ferent iterations is implemented �see, for example, Ref. 60 or
Ref. 61�.

Unfortunately, the system for the defect quantities be-
comes singular for vanishing external frequency �→0. This
is seen at the sum rule, Eq. �21�, which translates into
�M�YM�,M�	 ,	+��=−2�i�M�	� / ��+ i�� implying that the
YM,M� become of the order of 1

� for small � while all terms in
the integral equations stay at the order one. This becomes of
some importance when extracting static susceptibilities from
calculations of the dynamic susceptibilities, where a very
small but finite frequency is used. The resulting convergence
problems are probably connected to the ones already men-
tioned in Ref. 62. More details on the numerics can be found
in Ref. 41.

III. RESULTS

As it is well known, the SIAM exhibits the Kondo effect
for sufficiently large Coulomb repulsion U and the single-
particle level below the Fermi energy, � f �0. A very promi-
nent manifestation of that effect is the emergence of the
Abrikosov-Suhl resonance �ASR� in the one-particle density
of states �DOS� at the Fermi level for temperatures on the
order of the Kondo temperature TK. Within the ENCA an
order of magnitude estimation for TK is given by22

TK =
min�W,U�

2�
�Je−�/J, J = −

2U�A

� f�� f + U�
, �31�

where J is the effective antiferromagnetic Schrieffer-Wolff
exchange coupling, the Anderson width �A=��c�0�V2 and W
is the half bandwidth of the conduction electron DOS �c�	�.
The hybridization matrix element was assumed to be local,
i.e., momentum independent Vk� →V.

As already mentioned, the pathology of the NCA mani-
fests itself in the overestimation of the height of the ASR and
a violation of Fermi-liquid properties for too low tempera-
tures as well as in situations with large valence
fluctuations.26,34,35,55 This pathological behavior is strongest
for the case of a spin-only degeneracy �N=2�, which is con-
sidered in this work.

Figure 3 shows the one-particle f-electron DOS � f�	�
= 1

� Im F��	− i�� and the imaginary part of the total self-
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energy Im � f
tot�	− i��=−Im�1 /F��	− i�� calculated within

the ENCA and the NCA �U=��. As can be seen, the ENCA
does not overestimate the height of the Kondo peak or vio-
late the Fermi-liquid property of the total self-energy
Im � f

tot�0− i����A down to temperatures of half the Kondo
temperature. In contrast, the U=� NCA curves in the graphs
do violate these limits for the same parameter values.

The fact that the ENCA performs better than the NCA in
comparable situations is a consequence of a better balance
between different kinds of perturbational processes. The im-
portance of such a balance has been pointed out
repeatedly.23,63,64

Even though the performance of the ENCA is consider-
ably enhanced over the NCA, it eventually overestimates the
height of the ASR for even lower temperatures and still
misses to produce the correct T=0 Fermi-liquid relations.
Further improvements can be archived via the incorporation
of higher-order diagrams.23

A. Benchmarking the ENCA

1. Static susceptibilities in the symmetric case

In order to obtain a better understanding of possible short-
comings of the ENCA it is worthwhile to consider charge
and spin excitations separately and benchmark them against
some exactly known results. The thermodynamics of the
SIAM can be obtained exactly from the Bethe ansatz
method.3,4,65–67 At zero temperature and for the symmetric
case �� f =− U

2 � with a flat conduction band of infinite band-
width �W→�� the static susceptibilities can even be ob-
tained in closed form67,68

�mag
exact�T = 0� =

�g�B�2

4TL
�1 +

1
��
�

0

��A/2U

dx
e�x−�2/16x�

�x
�
�32�

with

TL = U��A

2U
exp�−

�U

8�A
+

��A

2U
� �33�

and

�charge
exact �T = 0� =

1

�
� 2

U�A
�

−�

�

dx
e−��Ax2/2U

1 + � U

2�A
+ x�2 . �34�

Apart from the small coupling correction �
�A

U in the expo-
nent, TL exactly coincides with the Kondo temperature of Eq.
�31�.

In the graphs of Fig. 4 the exact zero temperature mag-
netic �upper� and charge �lower� susceptibilities of Eqs. �32�
and �34� �solid red lines� are compared to the ENCA suscep-
tibilities �symbols� for � f =−U /2 as a function of U. For the
ENCA curves two characteristic temperatures TK and TK /2
are chosen.

�

� �

� �

� �

� �

�

� �

� � � � � � � � �

ω

π∆A ρf (ω)

∆A = 0.2

εf = −1

� � � � 	 � � � � 	


 � � � �

�

�

∞
c  � � �

� � � � � � � � � � � � �

ω

� � Σtot
f (ω − iδ)

� � � � � � � � � �

(b)

(a)

FIG. 3. �Color online� Rescaled f-electron spectra �upper graph�
and total self-energy �lower graph� as a function of energy for vari-
ous values of the Coulomb repulsion U. The temperature was fixed
at half the Kondo temperature T�TK /2 of each case, the ionic level
was chosen � f =−1 and the Anderson width was �A=0.2. The con-
duction band DOS was that of a three-dimensional tight binding
lattice with half bandwidth W=3 �“c band” in the upper graph�. The
insets show the low-energy interval around the Fermi level, where
the energy is measured in units of the corresponding Kondo tem-
perature and the horizontal lines indicate the T=0 limiting values.
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FIG. 4. �Color online� Static magnetic �upper� and charge
�lower� susceptibility for the symmetric case � f =−U /2 as a function
of U for finite temperatures TK and TK /2 in comparison to the exact
T=0 results of Eqs. �32� and �34�. The calculations were done for a
constant c-electron DOS with half bandwidth W=10 and an Ander-
son width �A=0.3.

SCHMITT, JABBEN, AND GREWE PHYSICAL REVIEW B 80, 235130 �2009�

235130-6



The characteristic exponential U dependence of the mag-
netic susceptibility is essentially the same as for the exact
Bethe ansatz result but the absolute height is somewhat dif-
ferent. At T=TK the magnetic susceptibility is roughly 70%
of its zero-temperature saturation value. However, at T
=TK /2 the susceptibility has almost saturated and the agree-
ment with the T=0 value is quite good.

The deviations for U�4 are due to the method used to
extract the static susceptibilities: The static limit is obtained
by evaluating the dynamic susceptibility at a small but finite
external frequency, in our case �=10−5. Since the ENCA
represents a conserving approximation, the results obtained
with this method agree with the static susceptibility obtained
from a derivative of a thermodynamic potential or solving
separate equations as in Ref. 69. This is valid as long as the
minimal frequency is negligible compared to the lowest
energy scale in the problem.

However, the Kondo temperature for U=4 is only of the
order of 10−4 and decreases for larger U. The susceptibility
calculated at �=10−5 then does no longer represent the static
limit anymore and the decrease seen in Fig. 4 is produced,
which is therefore not indicating a shortcoming of the ENCA
method. The deviation can be cured by choosing a smaller
value for the external frequency.

The charge susceptibility �lower graph in Fig. 4� shows no
significant temperature dependence for T=TK and TK /2 and
lies right on top of the exact T=0 result. The deviations for
U�4 are explained in the same way as for the magnetic
susceptibility described above.

These reasons for the deviation at larger U can be further
confirmed by calculating the static susceptibilities for a fixed
finite temperature T=0.05 as a function of the Coulomb in-
teraction, which are shown in Fig. 5. The figure compares the
static magnetic and charge susceptibilities for the symmetric
situation with the exact T=0 results.

The charge susceptibility decreases monotonically with
increasing Coulomb repulsion as expected. It follows the ex-
act zero-temperature susceptibility very accurately, which

again confirms its weak temperature dependence in symmet-
ric situations at low temperatures.

The magnetic susceptibility does agree with the exact T
=0 solution for low Coulomb repulsions but deviates for
U / �1+U��1 /3 �U�1 /2�. This is a finite temperature effect
since for values of U�1 /2 the Kondo temperature is smaller
than the chosen finite temperature of T=0.05. Consequently,
for U�1 /2 we are not in the low-temperature regime and
the susceptibility is not well described by its
T=0 value. The magnetic susceptibility does not grow expo-
nentially with U as for T=0 but instead saturates for
U→� at the asymptotic value of the Curie susceptibility of a
free spin, �mag=1 / �4T�=5, which is indicated by an arrow
on the right border of the graph.

2. Static susceptibilities in the asymmetric case

As a first test for the ENCA in the asymmetric situation
Fig. 6 compares the square of the effective screened local
magnetic moment of the impurity

�ef f
2 =

1

�g�B�2T�mag�� = 0� �35�

to the exact Bethe ansatz result for three different ionic-level
positions as a function of temperature. The solid gray lines
are the exact Bethe ansatz solution, which is taken from Ref.
70 while the colored points are ENCA calculations for the
same parameter values. The half bandwidth was taken to be
W=10, which should be large enough to be comparable to
the Bethe ansatz solution where W=�.

The ENCA slightly overestimates the squared effective
moment but all characteristic features are essentially the
same as for the Bethe ansatz. Especially the shape and the
relative height of the curves is in remarkable agreement: all
three ENCA curves can be brought to lie right on top of the
exact Bethe ansatz results when they are rescaled with one
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 � �  � � T = 0

FIG. 5. �Color online� Magnetic and charge susceptibility for the
symmetric impurity �� f =−U /2� as a function of the Coulomb inter-
action U at a fixed temperature T=0.05 and for an Anderson width
�A=0.2. Notice, the x axis is scaled as U / �1+U� so that U=�
corresponds to U / �1+U�=1. The arrow on the right of the figure
corresponds to the value of a Curie susceptibility �mag / �g�B�2

=1 / �4T�=5 of a free spin at temperature T=0.05.
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FIG. 6. �Color online� Temperature-dependent squared effective
magnetic moment within the ENCA �colored dots� for a fixed Cou-
lomb repulsion U=4V2 and three different f-level positions � f =0,
−V2 ,−2V2. The solid gray curves are the exact Bethe ansatz results
for the same parameter values �after Okiji and Kawakami �Ref.
70�. The calculations were done for a constant c-electron DOS
with half bandwidth W=10 and �A=0.167.

DYNAMIC SUSCEPTIBILITIES OF THE SINGLE-… PHYSICAL REVIEW B 80, 235130 �2009�

235130-7



single factor. This indicates that the ENCA produces a
slightly modified Kondo scale but otherwise describes the
static magnetic properties almost exactly. This is especially
remarkable for the intermediate valence situation with � f =0,
where the empty and singly occupied ionic configurations
are almost degenerate. In such situations stronger patholo-
gies occur in the one-particle DOS and the NCA-type of
approximations would be expected to yield results of lower
quality. However, as it can be seen, the magnetic excitations
are still described very accurately.

Calculations of the effective squared local moments for a
wide range of Coulomb interactions and hybridization
strength �not shown� resemble the exact solutions known
from the literature7,8,67 and the characteristics of the different
asymptotic regimes are well reproduced by the ENCA.

In Fig. 7 the magnetic susceptibility is systematically ex-
amined as a function of the ionic level position � f and for
fixed T and U. Also shown are the susceptibilities without
explicit two-particle interactions �lines without dots labeled
as “free”�, i.e., the local particle-hole propagator Pf�0� cal-
culated via

Pf��� = �
−�

�

d	f�	�� f�	��F↑�	 + � + i��

+ F↑�	 − � − i�� , �36�

where F↑ represents the one-particle f-Green’s function �cf.
Eq. �9�, � f�	� is the corresponding spectrum and f�	� is the
Fermi function.

All curves are symmetric around � f + 1
2U=0 which just

reflects the particle-hole symmetry of the model. The
particle-hole propagators show the expected maxima ap-
proximately situated at the positions of the Hubbard peaks in
the one-particle DOS � f + 1

2U� �
1
2U.

For very small U=0.01, the susceptibility calculated with
the ENCA is indistinguishable from the particle-hole propa-

gator as a consequence of the near lack of two-particle cor-
relations. For larger Coulomb interactions, the ENCA sus-
ceptibility shows only one broad maximum around � f + 1

2U
=0 �half filling�, which grows in height and width with in-
creasing U. The enhancement of the susceptibility is due to
the increasing local magnetic moment with larger U. The
plateau which develops around zero is due to the stability of
the local moment as long as the singly occupied ionic con-
figuration is stable, i.e., the lower Hubbard peak being below
and the upper above the Fermi level, and the temperature is
not too low compared to TK. But as soon as one of the Hub-
bard peaks extends over the Fermi level, i.e., � f + 1

2�A�0 or
� f +U− 1

2�A�0, the moment is destabilized. For both Hub-
bard peaks below �above� the Fermi level, the impurity is
predominantly doubly occupied �empty� and the magnetic
susceptibility drops drastically. The curve then rapidly ap-
proaches the particle-hole propagator, indicating that explicit
two-particle interactions are unimportant.

The reproduction of the correct results for the effectively
noninteracting limit at U=0.01 as well as the empty or fully
occupied regimes is quite remarkable.

As it was already mentioned earlier, the NCA does violate
Fermi-liquid properties for very low temperatures. Another
indication, in addition to the imbalance of the imaginary part
of the total self-energy at the Fermi level �−Im ��0+ i��
��A, stems from the zero frequency limit of the imaginary
part of the dynamic susceptibility. For the Fermi liquid at
T=0 it has to obey the so called Korringa-Shiba relation71

lim
�→0

�g�B�2

2��mag���2

Im �mag���
�

= 1. �37�

The function on the left hand side of this relation is shown in
Fig. 8 as a function of temperature for various values of U.
The explicit form Eq. �37� holds for a flat infinitely-wide
conduction band DOS. For a different DOS the numerical
prefactors might change slightly but the left-hand side is still
expected to be on the order of unity due to universality of the
SIAM at low energies.
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FIG. 7. �Color online� Static magnetic susceptibility for a fixed
T=0.05 and �A=0.2 as functions of the ionic-level position � f rela-
tive to the half-filling value −U /2 for various values of U. The
conduction band was chosen to be constant with a half bandwidth
of W=10. Curves without dots �free� are calculated without two-
particle interactions, i.e., with the particle-hole propagator of Eq.
�36�.
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FIG. 8. �Color online� lim�→0
�g�B�2

2��mag��,T�2

Im �mag��,T�
� evaluated as a

function of temperature and various Coulomb repulsions within the
ENCA. For comparison the U=�-NCA curve is shown as well. A
3D-SC DOS was used for the conduction electrons and �A=0.3.
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For the NCA, the quantity lim�→0 Im �mag��� /� is known
to diverge at T=0,57 which is reproduced by the U=� curve
in the figure. However, the ENCA �finite U values� performs
considerably better than the NCA. The curves still slightly
increase for temperatures T�TK /2 but they eventually satu-
rate at a finite value and do not diverge. This represents a
considerable improvement of the qualitative behavior of the
ENCA over the NCA.

The temperature-dependent static charge susceptibility is
shown in the Fig. 9 for various values of U as a function of
temperature. For high temperatures and U�4 the static sus-
ceptibility behaves effectively noninteracting with �charge
=1 / �8T� as expected.

For U=4 the susceptibility still has the characteristic 1 /T
dependence for high T but with a prefactor more closely to
1/16. This can be understood since in this situation the upper
Hubbard peak �incorporating roughly half the spectral
weight� is energetically just above the upper band edge of the
c band and therefore the accessible spectral weight for two-
particle excitations is approximately halved.

The rapid drop of the susceptibility for U=4 at tempera-
tures T�W is attributed to inaccuracies in the numerics for
solving the integral equations. However, in this effectively
noninteracting regime the susceptibility can be calculated
without explicit two-particle interactions via the particle-hole
propagator of Eq. �36�. The results thus obtained are shown
in the graph as colored dots without joining lines and are
seen to be nicely proportional to 1 /T for high temperatures.

Therefore, the ENCA reproduces the high-temperature as-
ymptotics of the SIAM. At temperatures around T /W� 1

3 all
susceptibilities show a pronounced maximum, which stems
from thermally excited charge fluctuations between the
empty and singly occupied ionic levels with excitation en-
ergy ��� f� /W=1 /3. For U=2, fluctuations between the sin-
gly and doubly occupied states have the same excitation en-

ergy �� f� /W= �� f +U� /W=1 /3 and therefore contribute
equally. For U=1.7 the energy of fluctuations involving the
doubly occupied state is somewhat smaller �� 0.7

3 �0.23�
and the peak is therefore broadened to lower energies. For
U=4 the doubly occupied state is inaccessible for thermal
fluctuations; so only the empty and singly occupied levels
contribute leading to a reduction in the susceptibility maxi-
mum by approximately a factor of 2.

At lower temperatures �T /W�0.05 in the figures� the
charge susceptibilities exhibit a slow increase followed by a
saturation at the zero temperature values. The increase in the
charge susceptibility occurs in a temperature range, where
the Kondo singlet and the local Fermi-liquid formation take
place, which manifests itself in the growing many-body reso-
nance at the Fermi level in one-particle DOS � f�	�.

Even though a direct interpretation of the increase in
terms of a Fermi-liquid picture �where the charge suscepti-
bility is proportional to the DOS at the Fermi level� is not
applicable since the Fermi liquid is formed only at very low
temperatures, it still provides an intuitive way of understand-
ing the increasing spectral weight at the Fermi level leads to
an enlarged phase-space volume for two-particle excitations
and the charge susceptibility is at least roughly proportional
to the DOS at the Fermi level. This is supported by the fact,
that �charge�0� increases logarithmically with decreasing tem-
perature, which is also the case for � f�0�. But how strong the
increase actually is and how it is influenced by the value of
the Coulomb repulsion U cannot be deduced from the sim-
plified Fermi-liquid analogy. This rather depends on the de-
tails of the two-particle correlations.

In the symmetric situation �U=−2� f =2� the charge sus-
ceptibility increases only moderately and approaches the ex-
act T=0 limiting value known from the Bethe ansatz, which
is indicated by the arrow at the left border of the Fig. 9. For
the asymmetric cases, the increase is considerably more pro-
nounced. Especially, the drastic low-temperature increase for
U=4 is rather unexpected. The absolute value of the suscep-
tibility is even larger than for the smaller values of U, which
is counterintuitive since charge fluctuations should be sup-
pressed for larger U. However, the tendency that for a given
level position � f the charge susceptibility in the asymmetric
situation can increase with growing U is known from pertur-
bation theory72 as a characteristic feature of valence fluctua-
tion physics. Valence fluctuations being at the origin of this
enhanced low-temperature increase in the charge susceptibil-
ity are in agreement with the observation already made
above, that for U=4 the doubly occupied ionic orbital is
outside the conduction band and the system is therefore from
the outset closer to the intermediate valence fixed point.

Reference calculations with the NRG �not shown� indeed
display the characteristic features of the charge susceptibility
as shown in Fig. 9: a maximum for temperatures on the order
of the ionic-level positions �� f� and � f +U and an increase
toward lower temperatures. In situations close to the valence-
fluctuation regime this increase leads to an enhancement of
the charge susceptibility by a factor of about 10. However,
the parameter values chosen for the U=4 ENCA curve are
not very close to the valence-fluctuation fixed point. This is
also reflected in the magnetic susceptibility for U=4, which
does not show any signatures of the valence fluctuation re-
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T/W
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 � 


 � �

1/(8T )

FIG. 9. �Color online� Temperature-dependent static charge sus-
ceptibility �charge�0� for various Coulomb repulsions U ��A=0.2�,
� f =−1. The arrow at the left border shows the exact T=0 limit for
the symmetric case U=2. The high-temperature asymptotic form of
a noninteracting impurity ��=1 / �8T� is shown as well �thick line�.
The colored dots, which are not connected by a line, denote the
asymptotic susceptibilities calculated without any two-particle in-
teractions, i.e., from Pf��=0�, see Eq. �36�. The conduction band
was chosen to be that of a 3D-SC lattice with a half bandwidth of
W=3.
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gime but rather exhibits behavior characteristic for the tran-
sition from a local moment to the strong coupling fixed point
�not shown�. NRG calculations with parameter values similar
to the ones chosen in this study did show a low-temperature
increase but not as strong as observed with the ENCA.

Altogether it can be concluded that the ENCA does de-
scribe the charge fluctuations qualitatively right but overes-
timates the influence of intermediate valence phenomena at
very low temperatures in the asymmetric case. To make the
range of applicability of the ENCA more clear, it is instruc-
tive to consider the charge susceptibility for fixed values of
U and T, varying the ionic-level positions � f, which is shown
in Fig. 10. The particle-hole propagators already displayed in
Fig. 10 are included as well �lines without dots�. The ENCA
charge susceptibilities are always minimal for half filling
�� f +U /2=0� and increases away from the symmetric case.
The absolute value of the charge susceptibility in the sym-
metric situation is drastically reduced compared to the corre-
sponding particle-hole propagator for large values U=2 and
U=4, which indicates that the two-particle correlations
strongly suppress charge fluctuations. In that situation, the
susceptibility cannot accurately be described by the one-
particle DOS alone and independent though strongly renor-
malized quasiparticles.

On the logarithmic scale, the increase with growing dis-
tance from zero can nicely be fitted with a parabola centered
at zero, which corresponds to an exponential increase in the
susceptibility, �charge�e���f + U / 2�2

, ���0�. This shows the
strong influence of the asymmetry and the contribution of
valence fluctuations to the charge fluctuations.

However, the ENCA clearly fails for large asymmetries as
the susceptibility saturates for �� f + 1

2U�� 1
2U.73 In contrast,

�charge�0� should decrease again �cf. Ref. 74� and approach
the particle-hole propagator due to the effective noninteract-
ing nature. This is most drastic for the almost noninteracting
case with U=0.01, where, apart from reproducing the value
at half filling quite accurately, the curve goes the opposite

direction as expected. The values at which the downturn in
the susceptibility should occur correspond to situations,
where both Hubbard peaks in the one-particle spectrum �very
roughly at � f and � f +U� are either below or above the Fermi
level, corresponding to the empty and fully occupied impu-
rity regimes.

The ENCA is designed to describe spin-flip scattering and
the magnetic exchange coupling correctly but it does not
fully capture the physics of charge fluctuations outside the
Kondo regime. In situations, where the unperturbed ground
state is either the empty or doubly occupied ionic state,
crossing diagrams neglected in the ENCA are vital to de-
scribe charge fluctuations accurately. On the other hand,
magnetic fluctuations are still described very accurately in
these situations �see Figs. 6 and 7�.

B. Dynamic susceptibilities

1. Magnetic susceptibility

The imaginary part of the dynamic magnetic susceptibil-
ity is shown in Fig. 11 for two different values of U and two
characteristic temperatures. The spectrum of the susceptibil-
ity shows a pronounced maximum, which is shifted to lower
frequencies and increases considerably in height as the tem-
perature is lowered. For temperatures below the Kondo tem-
perature, the position of the maximum remains fixed at a
value on the order of the Kondo temperature.

Also shown in the figure are fits with a Lorentzian form

�mag
fit ��� =

�0

1 − i�/�
, � � R , �38�

which describe the low-frequency susceptibilities very well.
The form Eq. �38� corresponds to an exponential spin relax-
ation with relaxation time 1 /�. The line width � is directly
proportional to the NMR impurity nuclear spin-lattice relax-
ation rate ��T1.71

The relaxation rates � extracted from susceptibilities for
various parameters follow a �T law41 for high temperatures
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FIG. 10. �Color online� Static charge susceptibility for a fixed
T=0.05 and �A=0.2 as functions of the ionic-level position � f rela-
tive to the half-filling value −U /2 for various values of U. The
conduction band was chosen to be constant with a half bandwidth
of W=10. Curves without dots �free� are calculated without two-
particle interactions, i.e., with the particle-hole propagator of Eq.
�36�.
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FIG. 11. �Color online� The imaginary part of the dynamic mag-
netic susceptibility for � f =−1 two values of U �U=2,4� and two
characteristic temperatures �T=10TK , TK /2� in a double-
logarithmic plot. The corresponding Kondo temperatures are indi-
cated as arrows on the frequency axis. All curves are calculated for
�A=0.3 and a 3D-SC band DOS �W=3�.
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and saturate at a value on the order of TK at temperatures
below TK �not shown�, in accord with what was already
found earlier.29,75,76

The physical picture behind these findings is quite clear:
on lowering the temperature, the local moment of the impu-
rity becomes increasingly coupled to the surrounding spin of
the band electrons resulting in an enhanced response. At tem-
peratures on the order of or lower than the Kondo tempera-
ture, the local Fermi-liquid state is approached in which the
local spin is screened and a local Kondo singlet is formed
with a “binding energy” of about TK. Therefore the maxi-
mum in the spin-excitations spectrum as well as the NMR
relaxation rate, both are pinned at an energy on the order of
TK.

Jarrell et al.76 also found that the function

f��� =
�TK

2�mag�0�
Im �mag���

�
�39�

shows universality and depends only on T /TK. Figure 12
shows this function normalized to its zero frequency value
for various parameter sets. All graphs can be collapsed onto
one single curve showing the universal shape of the function
f for low energies.

In order to achieve scaling a guess for the actual Kondo
temperature TK

� has to be used. In contrast, the TK value
calculated by Eq. �31� and used in this work does not repre-
sent the exact physical low-energy scale TK

� but only pro-
vides an order of magnitude estimate. In the universal regime
with a flat c-band DOS this should not make any difference
but since we are using the 3D-SC DOS, nonuniversal correc-
tions enter for different � f and U. The value of the “real”
Kondo temperature could have been extracted from fits of
the calculated susceptibilities to the universal curve of the
susceptibility as described by Jarrell et al.77

The rapid decrease in the curves in the figure for frequen-
cies of � /TK

� �100 also stems from the finite bandwidth of
the 3D-SC conduction band used for these calculations. The

above findings clearly confirm that the dynamics of the im-
purity spin is solely determined by the antiferromagnetic ex-
change between the impurity- and conduction-electron spins.
Even in the asymmetric situation, the only relevant energy
scale for magnetic fluctuations of the impurity is the Kondo
temperature TK at low temperatures.

2. Charge susceptibility

The imaginary part of the dynamic charge susceptibilities
for two different Coulomb repulsions and characteristic tem-
peratures, calculated with a 3D-SC band DOS, are shown in
Fig. 13. In the spectra the characteristic features stemming
from excitations involving the Hubbard peaks at energies
around �� f� and � f +U are clearly visible.

In the symmetric case �U=2�, the height of the peak at
���� f� is about twice of the one in the asymmetric case �U
=4�. This is due to the doubled phase-space volume for the
symmetric situation with excitation energies matching, � f

+U= �� f�, while for U=4 the upper Hubbard peak is moved
to higher energies.
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FIG. 12. �Color online� Scaling function f�� /TK
� � / f�0� from Eq.

�39� for the following parameter sets: �� f =−0.5;U=1;T /TK

=10,1�, �� f =−1;U=2;T /TK=1�, �� f =−1.5;U=3;T /TK=1�, �� f =
−2;U=4;T /TK=1�, �� f =−1;U=3;T /TK=1�, �� f =−1;U=4;T /TK

=1,1 /2,1 /3,1 /5,1 /7,1 /10�, and �� f =−1;U=8;T /TK=1�. All
curves are calculated for �A=0.3 and a 3D-SC band DOS.
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FIG. 13. �Color online� Imaginary part of the dynamic charge
susceptibility for the symmetric �� f =−1, U=2, upper� and asym-
metric �� f =−1, U=4, lower� case for two characteristic tempera-
tures T=10TK and T=TK /2. The curves for the particle-hole propa-
gators �free� are shown as well. The insets show the corresponding
low-energy region on a double-logarithmic scale. The Kondo tem-
perature for each case is indicated by the red arrow on the fre-
quency axis in the low-energy insets. The calculations are done for
a 3D-SC band and �A=0.3.
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Also shown in the graphs are the local particle-hole
propagators of Eq. �36� �labeled as free�. These show char-
acteristic features of the Hubbard peaks too but the most
prominent difference to the fully interacting susceptibility is
the strong suppression of the high energy response in the
latter. For example, the broad excitation continuum in the
particle-hole propagator of the asymmetric case �U=4� for
energies in the range 3���6 is reduced to a very small
peak at ��3 in the fully interacting susceptibility.

Pf��� is just a measure for the phase-space volume for
statistical-independent particle-hole excitations, which are
described by the one-particle DOS � f. The quasiparticles and
holes at the Fermi level, on the other hand, are strongly cor-
related, leading to an effective suppression of the available
phase-space volume.

The role of the low-energy quasiparticles can be studied
by comparing the particle-hole propagator and the interacting
susceptibilities at low energies for the symmetric situation
�U=2, inset�. The response via the particle-hole propagator
for ��TK shows an increase for lower temperatures, which
stems from the quasiparticle-quasihole excitations within the
growing Kondo resonance. In the fully interacting suscepti-
bility this increase is approximately an order of magnitude
smaller, clearly showing the effect of correlations in the two-
particle response.

Surprisingly, for the asymmetric case �U=4� this trend is
reversed and the interacting susceptibility is enhanced over
the particle-hole propagator for excitation energies smaller
than the Kondo scale ��TK �see inset�. This very pro-
nounced low-energy response is produced by quasiparticle-
quasihole excitations in the local Fermi-liquid phase at low
temperatures. The fact that these excitations are strongly en-
hanced in the asymmetric case compared to the symmetric
situation is associated with the presence of strong valence
fluctuations as was already discussed for the static suscepti-
bility above.

Even though such a low-energy enhancement was not re-
ported in NRG calculations for the charge susceptibility44,78

an inspection of the low-energy part of the many-body spec-
trum obtained with the NRG �Ref. 79� and preliminary NRG
calculations indeed suggest the possibility of an enhanced
charge response for asymmetric situations.

A similar but not as strong temperature-dependent in-
crease in the dynamic susceptibility for temperatures on the
order of the Kondo temperature was already found for larger
orbital degeneracy and U=� with the NCA.62 Therefore we
argue that these findings for the dynamic charge susceptibil-
ity are in accord with the ones discussed in the previous
section for the static charge susceptibility. The observed in-
crease in the charge response for energies smaller than the
Kondo scale is indeed physical and due to the influence of
the valence fluctuations of the low-temperature Fermi liquid.
However, the magnitude of the enhancement shown in Fig.
13 is arguable, especially for the choice of parameters in the
present calculation.

IV. CONCLUSIONS

We have studied the SIAM within a conserving approxi-
mation, the ENCA, for a variety of model parameters. It was

shown, that the ENCA constitutes a very accurate approxi-
mation for the static and dynamic one- and two-particle
quantities of that model for temperatures down to a fraction
of the Kondo temperature. It considerably improves the
Fermi-liquid properties and cures shortcomings of the NCA,
like the removal of the divergence of lim�→0

Im �mag���
� at zero

temperature.
In symmetric situations �2� f +U=0�, the static magnetic

and charge susceptibilities were shown to be in excellent
agreement with the exact Bethe ansatz results. This was even
true for cases with very small Coulomb interaction U, which
could not be expected from the beginning since approxima-
tions within direct perturbation theory with respect to the
hybridization usually have problems describing the noninter-
acting case.

The static magnetic susceptibility is in excellent agree-
ment with exact Bethe ansatz results in the asymmetric situ-
ation. This holds also in cases with strong valence fluctua-
tions, such as for � f =0 or in the empty and fully occupied
orbital regimes.

However, the static charge susceptibility in the asymmet-
ric model is described accurately only in situations, where
the singly occupied impurity valence state represents the un-
perturbed ��A=0� ground state. In addition, even though we
believe that the qualitative features of the charge susceptibil-
ity in asymmetric situations are captured by the presented
calculations, the influence of valence fluctuations is probably
overestimated for too low temperatures. This confirms the
expectation, that crossing diagrams, which are neglected in
the ENCA, are essential for the quantitative description of
situations with strong valence fluctuations, where the impu-
rity occupation is statistically fluctuating. This also is in ac-
cord with the known pathologies in the one-particle spectral
function. There, charge and magnetic fluctuations both con-
tribute and the overestimation of the charge excitations at
very low temperatures leads to the overshooting of the
Kondo resonance and the observed spikes in the DOS.

The dynamic magnetic susceptibility is dominated by
Kondo screening of the impurity spin. The ENCA correctly
reproduces the temperature and other parameter dependen-
cies of the magnetic excitations, and also the scaling found in
previous studies is obtained. The dynamical charge spectrum
shows a severe suppression of high-energy excitations due to
correlations, when compared to the particle-hole propagator,
which would represent the susceptibility of independent
renormalized quasiparticles. Additionally the low-energy re-
sponse for excitation energies smaller than the Kondo tem-
perature is also strongly suppressed in the symmetric case
due to the same correlations between low-energy quasiparti-
cles.

In the asymmetric situation the low-energy charge re-
sponse is drastically enhanced and an additional peak
emerges. This enhancement is attributed to the presence of
the valence-fluctuation fixed point in the asymmetric model.
Such an enhancement seems quite probable so that only the
steepness of the increase calculated within the ENCA for
parameter values chosen is arguable. With these findings, the
prospects of describing two-particle dynamics of lattice sys-
tems within the DMFT are very promising and results will be
presented in a subsequent publication.41,42
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